Pre-class Warm-up!!!

How would you do the following question?

Spring 2007 Midterm 3

2. Compute the integral $\iint_{-} S F \cdot d S$, where $F(x, y, z)=(y-z, x-z, x-y)$ and S is the planar surface parametrized by Phi $(u, v)=(u-v, u+v, u)$ for $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Orient the surface so the first component of the normal vector is positive.
$\sqrt{ }$ a. Evaluate directly
b. Go into polar, cylindrical or spherical coordinates.
c. Make a different change of variables.
d. Use Stokes' theorem ?
e. None of the above.

Review for exam 3
' We have covered
8.3 Conservative vector field (criterion for $\mathrm{F}=$ grad f , also for $\mathrm{F}=$ curl G. All past exam questions ask to find f so that $F=\operatorname{grad} f$ and then evaluate a line integral $\int \mathrm{F} \cdot \mathrm{dS}$, which was done in section 7.2 and on EXam 2.)

6.1, 6.2 Change of variables in 2D and 3D. (Finding linear changes of variables, the change of variables formula, cylindrical and spherical coordinates) $\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(x(u, v) y(u, v)) \cdot\left(\frac{\partial, y)}{\partial(u, v)} d x u d y\right.$
7.3 What is a parametrization of a surface?
(Find tangent planes) Tangent vectors T_{u}, T_{v}
E Nounal Tux T_{v}
7.4 Surface area.
7.5 Scalar surface integrals $\iint_{D} f\left\|T_{u} \times T_{V}\right\| d u d v$
7.6 Vector surface integrals

There is no question like tiv is on Exam 3.
8.2 Stokes' theorem Witt the boundaryonention

$$
\int_{\partial S} F \cdot d \underline{S}=\iint_{S} \nabla \times F \cdot d \underline{S}
$$

Things not on Exam 3
Find f so that $F=\operatorname{grad} f$, then use this to compute a line integral.
This was material from section 7.2 and appeared in Exam 2.

Green's theorem. Ds

For cylindrical coordinates $d x d y d z=r d r d \theta d z$
$d x d y d z=\sim d \rho d \theta d \phi$
formula given on the exam

The past Spring exams 2007-2011

All have a question about Stokes' theorem. Three do Stokes on a triangle, one does it on a hemisphere, and one on a disk parallel to the $x y$-plane.

Typically they have one or two questions about cylindrical or spherical coordinates.

They all have a change of variables question.
The mostly have a gradient vector field question.
Not on Exam 3

Spring 2007 Midterm 3
2. Compute the integral \iint SF $\cdot d S$, where $F(x, y, z)=(y-z, x-z, x-y)$ and S is the planar surface parametrized by $\operatorname{Phi}(u, v)=(u-v, u+v, u)$ for $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Orient the surface so the first component of the normal vector is positive.
First approach: use Stokes theorem (ba dideal.)
Notice that $F=\nabla_{x} G$ for some G because $\nabla \cdot F=\left(\frac{\partial}{\partial x}(y-z), \frac{\partial}{\partial y}(x-2), \frac{\partial(x-y))}{\partial z}\right)$

$$
\begin{aligned}
& G=0 \\
& \iint_{S} F \cdot d S=\frac{\left(y^{2}-z^{2}\right.}{2},
\end{aligned}
$$

$\partial S=4$ edges of a parallelogram, giving 4 integrals it is a lot of work.

End Approach: evaluate directly

$$
T_{u}=(1, i, 1) \quad T_{v}(-1,1,0)
$$

$T_{n} \times T_{r}=(-1,-1,2)$. Φ is not convi'stant with the onentation. To correct this use

$$
\Phi_{1}(u, v)=\Phi(v, u) \cdot \text { Now } T_{u} \times T_{v}=(1,1,-2)
$$

Or use Φ and multiply by -1 at the end.
Using Φ_{1} we get

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}(u+v-u, u-v-u, u-v-(u+v)) \cdot(1,1,-2) d u d v \\
& =\int_{0}^{1} \int_{0}^{1}(v-v+4 v) d u d v \\
& =2
\end{aligned}
$$

Spring 2010 Question 6.
Evaluate
$\int-C(x+y) d x+(2 x-z) d y+(y+z) d z$
where C is the perimeter of the triangle connecting $(2,0,0),(0,3,0)$ and $(0,0,6)$ in that order.

How would you do it?
a. Evaluate directly
b. Go into polar, cylindrical or spherical coordinates.
c. Make a different change of variables.
d. Use Stokes' theorem
e. None of the above.

Solution uni Stokes. Let S be the triangle with these vertices, or vented by a normal rector pointing at us. Now $C \approx \partial S$
Stokes $\int_{C} F \cdot d \underline{s}=\iint_{S} \nabla \times F \cdot d S$

$$
\nabla \times F=(1-(-1), 0-0,2-1)=(2,0,5)
$$

We need $T_{u} \times T_{v}$. Parametrize S

$$
\begin{aligned}
& \Phi(u, v)=u(2,0,-6)+v(-2,3,0)+(2,0,0) \\
& T_{u}=(2,0,-6) \quad T_{v}=(-2,3,0)
\end{aligned}
$$

$(-2,3,0)$
$T_{u} \times T_{r}=(18,12,6)$. This has correct. orientation. Let $n=\frac{T_{u} \times T_{v}}{\left\|T_{u} \times T_{v}\right\|}$ be a unit normal,

$$
\begin{aligned}
& \iint_{S} \nabla \times F \cdot d S=\iint_{D} \nabla_{x} F \cdot \underline{n}\left\|T_{u} \times T_{v}\right\| d u d v \\
& =\frac{42}{\left\|T_{u} \times T_{v}\right\|} \iint_{D}\left\|T_{u} \times T_{v}\right\| d u d v=\frac{42}{\left\|T_{u} \times T_{v}\right\|} \text {. Area of } \\
& =\frac{42}{\left\|T_{u} \times T_{v}\right\| \cdot \frac{1}{2} \cdot\left\|T_{u} \times T_{v}\right\|=21}
\end{aligned}
$$

Spring 2010 Question 1. Parametrize the surface $3\left(x^{\wedge} 2+y^{\wedge} 2\right)+2 z^{\wedge} 2=2$ with $z \geq x^{\wedge} 2+y^{\wedge} 2$.

How would you do it?
a. Evaluate directly
b. Go into polar, cylindrical or spherical coordinates.
c. Make a different change of variables.
d. Use Stokes' theorem
e. None of the above.

Spring 2008 Question 4. Parametrize the ellipsoid $9 x^{\wedge} 2+4 y^{\wedge} 2+z^{\wedge} 2=36$. Include the correct bounds
Find an equation for the tangent plane when theta $=\mathrm{phi}=\pi / 4$.

Spring 2010 Question 5. Let Be be the region in the first quadrant bounded by the curves $x y=1, x y=3, x^{\wedge} 2-y^{\wedge} 2=1$ and $x^{\wedge} 2-y^{\wedge} 2=4$.
Evaluate $\iint _B\left(x^{\wedge} 2+y^{\wedge} 2\right) d x d y$
Using the change of variables $u=x^{\wedge} 2$ $y^{\wedge} 2, v=x y$.

